

lecture #10

Random Variables.

- Often when performing an experiment, we are interested in some function of the outcomes as opposed to the actual outcomes themselves.
- Ex: When rolling two dice, the sample space is $S = \{(a, b) : 1 \leq a \leq 6, 1 \leq b \leq 6\}$, and we may be interested in:
 - $S \rightarrow \mathbb{R} : (a, b) \mapsto a+b$
 - or $(a, b) \mapsto \max\{a, b\}$
 - or $(a, b) \mapsto \min\{a, b\}$
 - or $(a, b) \mapsto ab$ etc.

Ex: we flip a coin three times, $S = \{(i, j, k) : i, j, k \in \{H, T\}\}$
we may be interested in the # of heads in an outcome.

Such functions are called random variables.

- Since the value of a random variable is determined by the outcome of the experiment, we may assign probabilities to the possible values of a random var.

Ex: Rolling Two dice.

1	2	3	4	5	6	
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Sums to:

- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12

If X is the random variable

$X(a,b) = a+b$, then

$$P(X=2) = \frac{1}{36}, \quad P(X=10) = \frac{3}{36}.$$

$$P(X=3) = \frac{2}{36}, \quad P(X=11) = \frac{2}{36}.$$

$$P(X=4) = \frac{3}{36}.$$

$$P(X=5) = \frac{4}{36}, \quad P(X=12) = \frac{1}{36}.$$

$$P(X=6) = \frac{5}{36}.$$

$$P(X=7) = \frac{6}{36}$$

$$P(X=8) = \frac{5}{36}.$$

$$P(X=9) = \frac{4}{36}.$$

Note that $\sum_{i=2}^{12} P(X=i) = 1$.

Ex: We have a well-shuffled deck of cards. Suppose that our experiment is drawing 4 cards with replacement. Let X = the number of aces in the draw.

- The possible values of X are $\{0, 1, 2, 3, 4\}$.

Let's find the probabilities for these values.

$P(X=0)$: \rightarrow for each draw, there is a $\frac{48}{52}$ probability of not being an ace. If all draws are non-aces, then

$$P(X=0) = \left(\frac{48}{52}\right) \left(\frac{48}{52}\right) \left(\frac{48}{52}\right) \left(\frac{48}{52}\right) = \left(\frac{48}{52}\right)^4$$

$P(X=i)$ \rightarrow since there are 4 slots and i aces, there are $\binom{4}{i}$ many ways the cards can show up (i.e. AA--, A--A-, -AA-, for $i=2$).

$$\text{So } P(X=i) = \binom{4}{i} \left(\frac{4}{52}\right)^i \left(\frac{48}{52}\right)^{4-i}$$

↑
 number of aces ↑
 number of non aces

Ex: We roll a single die. Let X be the number of times we need to roll until we see a 1 (ie $X=n$ if the n^{th} roll is a 1 and no previous roll was a 1). What are the possible values of X ?

$$X = 1, 2, 3, 4, 5, \dots$$

It is possible that you could roll a die 1000000000 times and never see a 1 (but unlikely).

$$P(X=i) = \left(\frac{5}{6}\right)^{i-1} \times \left(\frac{1}{6}\right)$$

↓
 the first $i-1$ rolls
 are non-ones. ↓
 the probability
 that the i^{th} roll
 is a 1.

Question: What is the probability that $X \geq 2$?

Since each of the events are mutually exclusive,

$$\begin{aligned}
 P(X \geq 2) &= \sum_{i=2}^{\infty} P(X=i) \\
 &= \sum_{i=2}^{\infty} \left(\frac{5}{6}\right)^{i-1} \left(\frac{1}{6}\right) = \left(\frac{1}{6}\right) \sum_{i=2}^{\infty} \left(\frac{5}{6}\right)^{i-1} \\
 &= \left(\frac{1}{6}\right) \sum_{j=1}^{\infty} \left(\frac{5}{6}\right)^j \\
 &= \left(\frac{1}{6}\right) \left(\frac{5}{6}\right) \sum_{j=1}^{\infty} \left(\frac{5}{6}\right)^{j-1} \\
 &= \left(\frac{1}{6}\right) \left(\frac{5}{6}\right) \cdot \left(\frac{1}{1 - \frac{5}{6}}\right) = \frac{5}{6}.
 \end{aligned}$$

Equivalently, since we know that there is 100% chance that something happens (i.e. eventually, we will see a 1), and so $\sum_{i=1}^{\infty} P(X=i) = 1$.

$$\text{So } P(X \geq 2) = 1 - \underbrace{P(X \leq 1)}_{= P(X=1)} = 1 - \frac{1}{6} = \frac{5}{6}.$$

Defn: For a random variable X , the

function F defined by

$$F(x) = P(X \leq x), \quad -\infty < x < \infty$$

is called a cumulative distribution function.

In the previous example,

$$F(x) = \sum_{i=1}^{\infty} \left(\frac{5}{6}\right)^{i-1} \left(\frac{1}{6}\right).$$

Discrete Random Variables.

A random variable that can only take countably many values is called a discrete random variable (DRV).

Defn: If X is a DRV, we define the probability mass function of X to be

$$p(x) := P(X=x).$$

The probability mass function is positive for at most countably many values of x . If X takes possible values $\{x_1, x_2, \dots\}$, then

$$p(x_i) \geq 0 \text{ for } \{x_1, x_2, \dots\}.$$

and $p(y) = 0$ for all other values.

Since every possible value of X is in $\{x_1, x_2, x_3, \dots\}$ we have

$$\sum_{i=1}^{\infty} p(x_i) = 1.$$

Expected Value of a DRV.

Let X be a DRV with p.m.f. $f(x)$. The expected value of X , written $E[X]$, or μ is defined to be the average of the possible values of X , weighted by their probabilities. That is

$$E[X] = \sum_{x: p(x) > 0} x p(x).$$